weightedIndex
Randomly selects an index into proportions, where the likelihood of each
index is weighted by that proportion.
It is more likely for the index of the last proportion to be returned
than the index of the first proportion in the slice, and vice versa.
This is useful for selecting an item from a slice where weights are not equal.
T must be a numeric type capable of holding the sum of proportions.
Function parameters
Parameters
Fast unbiased random numbers.
Types
- DefaultPrng
- Fast unbiased random numbers.
- DefaultCsprng
- Cryptographically secure random numbers.
Functions in this namespace
Functions
- bytes
- Read random bytes into the specified buffer until full.
- enumValue
- Returns a random value from an enum, evenly distributed.
- enumValueWithIndex
- Returns a random value from an enum, evenly distributed.
- int
- Returns a random int `i` such that `minInt(T) <= i <= maxInt(T)`.
- uintLessThanBiased
- Constant-time implementation off `uintLessThan`.
- uintLessThan
- Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
- uintAtMostBiased
- Constant-time implementation off `uintAtMost`.
- uintAtMost
- Returns an evenly distributed random unsigned integer `0 <= i <= at_most`.
- intRangeLessThanBiased
- Constant-time implementation off `intRangeLessThan`.
- intRangeLessThan
- Returns an evenly distributed random integer `at_least <= i < less_than`.
- intRangeAtMostBiased
- Constant-time implementation off `intRangeAtMostBiased`.
- intRangeAtMost
- Returns an evenly distributed random integer `at_least <= i <= at_most`.
- float
- Return a floating point value evenly distributed in the range [0, 1).
- floatNorm
- Return a floating point value normally distributed with mean = 0, stddev = 1.
- floatExp
- Return an exponentially distributed float with a rate parameter of 1.
- shuffle
- Shuffle a slice into a random order.
- shuffleWithIndex
- Shuffle a slice into a random order, using an index of a
- weightedIndex
- Randomly selects an index into `proportions`, where the likelihood of each
- limitRangeBiased
- Convert a random integer 0 <= random_int <= maxValue(T),
Source
Implementation
pub fn weightedIndex(r: Random, comptime T: type, proportions: []const T) usize {
// This implementation works by summing the proportions and picking a
// random point in [0, sum). We then loop over the proportions,
// accumulating until our accumulator is greater than the random point.
const sum = s: {
var sum: T = 0;
for (proportions) |v| sum += v;
break :s sum;
};
const point = switch (@typeInfo(T)) {
.int => |int_info| switch (int_info.signedness) {
.signed => r.intRangeLessThan(T, 0, sum),
.unsigned => r.uintLessThan(T, sum),
},
// take care that imprecision doesn't lead to a value slightly greater than sum
.float => @min(r.float(T) * sum, sum - std.math.floatEps(T)),
else => @compileError("weightedIndex does not support proportions of type " ++
@typeName(T)),
};
assert(point < sum);
var accumulator: T = 0;
for (proportions, 0..) |p, index| {
accumulator += p;
if (point < accumulator) return index;
} else unreachable;
}