addWrap
r = a + b with 2s-complement wrapping semantics. Returns whether overflow occurred. r, a and b may be aliases
Asserts the result fits in r. An upper bound on the number of limbs needed by
r is calcTwosCompLimbCount(bit_count).
Function parameters
Parameters
- r:*Mutable
- bit_count:usize
Used to indicate either limit of a 2s-complement integer.
Types
- TwosCompIntLimit
- Used to indicate either limit of a 2s-complement integer.
- Mutable
- A arbitrary-precision big integer, with a fixed set of mutable limbs.
- Const
- A arbitrary-precision big integer, with a fixed set of immutable limbs.
- Managed
- An arbitrary-precision big integer along with an allocator which manages the memory.
Returns the number of limbs needed to store `scalar`, which must be a
Functions
- calcLimbLen
- Returns the number of limbs needed to store `scalar`, which must be a
- calcSetStringLimbCount
- Assumes `string_len` doesn't account for minus signs if the number is negative.
- calcNonZeroTwosCompLimbCount
- Compute the number of limbs required to store a 2s-complement number of `bit_count` bits.
- calcTwosCompLimbCount
- Compute the number of limbs required to store a 2s-complement number of `bit_count` bits.
- addMulLimbWithCarry
- a + b * c + *carry, sets carry to the overflow bits
- llcmp
- Returns -1, 0, 1 if |a| < |b|, |a| == |b| or |a| > |b| respectively for limbs.
Source
Implementation
pub fn addWrap(r: *Mutable, a: Const, b: Const, signedness: Signedness, bit_count: usize) bool {
const req_limbs = calcTwosCompLimbCount(bit_count);
// Slice of the upper bits if they exist, these will be ignored and allows us to use addCarry to determine
// if an overflow occurred.
const x = Const{
.positive = a.positive,
.limbs = a.limbs[0..@min(req_limbs, a.limbs.len)],
};
const y = Const{
.positive = b.positive,
.limbs = b.limbs[0..@min(req_limbs, b.limbs.len)],
};
var carry_truncated = false;
if (r.addCarry(x, y)) {
// There are two possibilities here:
// - We overflowed req_limbs. In this case, the carry is ignored, as it would be removed by
// truncate anyway.
// - a and b had less elements than req_limbs, and those were overflowed. This case needs to be handled.
// Note: after this we still might need to wrap.
const msl = @max(a.limbs.len, b.limbs.len);
if (msl < req_limbs) {
r.limbs[msl] = 1;
r.len = req_limbs;
@memset(r.limbs[msl + 1 .. req_limbs], 0);
} else {
carry_truncated = true;
}
}
if (!r.toConst().fitsInTwosComp(signedness, bit_count)) {
r.truncate(r.toConst(), signedness, bit_count);
return true;
}
return carry_truncated;
}