byteSwap
r = @byteSwap(a) with 2s-complement semantics. r and a may be aliases.
Asserts the result fits in r. Upper bound on the number of limbs needed by
r is calcTwosCompLimbCount(8*byte_count).
Function parameters
Parameters
- r:*Mutable
- byte_count:usize
Used to indicate either limit of a 2s-complement integer.
Types
- TwosCompIntLimit
- Used to indicate either limit of a 2s-complement integer.
- Mutable
- A arbitrary-precision big integer, with a fixed set of mutable limbs.
- Const
- A arbitrary-precision big integer, with a fixed set of immutable limbs.
- Managed
- An arbitrary-precision big integer along with an allocator which manages the memory.
Returns the number of limbs needed to store `scalar`, which must be a
Functions
- calcLimbLen
- Returns the number of limbs needed to store `scalar`, which must be a
- calcSetStringLimbCount
- Assumes `string_len` doesn't account for minus signs if the number is negative.
- calcNonZeroTwosCompLimbCount
- Compute the number of limbs required to store a 2s-complement number of `bit_count` bits.
- calcTwosCompLimbCount
- Compute the number of limbs required to store a 2s-complement number of `bit_count` bits.
- addMulLimbWithCarry
- a + b * c + *carry, sets carry to the overflow bits
- llcmp
- Returns -1, 0, 1 if |a| < |b|, |a| == |b| or |a| > |b| respectively for limbs.
Source
Implementation
pub fn byteSwap(r: *Mutable, a: Const, signedness: Signedness, byte_count: usize) void {
if (byte_count == 0) return;
r.copy(a);
const limbs_required = calcTwosCompLimbCount(8 * byte_count);
if (!a.positive) {
r.positive = true; // Negate.
r.bitNotWrap(r.toConst(), .unsigned, 8 * byte_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
} else if (limbs_required > a.limbs.len) {
// Zero-extend to our output length
for (r.limbs[a.limbs.len..limbs_required]) |*limb| {
limb.* = 0;
}
r.len = limbs_required;
}
// 0b0..01..1 with @log2(@sizeOf(Limb)) trailing ones
const endian_mask: usize = @sizeOf(Limb) - 1;
var bytes = std.mem.sliceAsBytes(r.limbs);
assert(bytes.len >= byte_count);
var k: usize = 0;
while (k < (byte_count + 1) / 2) : (k += 1) {
var i = k;
var rev_i = byte_count - k - 1;
// This "endian mask" remaps a low (LE) byte to the corresponding high
// (BE) byte in the Limb, without changing which limbs we are indexing
if (native_endian == .big) {
i ^= endian_mask;
rev_i ^= endian_mask;
}
const byte_i = bytes[i];
const byte_rev_i = bytes[rev_i];
bytes[rev_i] = byte_i;
bytes[i] = byte_rev_i;
}
// Calculate signed-magnitude representation for output
if (signedness == .signed) {
const last_byte = switch (native_endian) {
.little => bytes[byte_count - 1],
.big => bytes[(byte_count - 1) ^ endian_mask],
};
if (last_byte & (1 << 7) != 0) { // Check sign bit of last byte
r.bitNotWrap(r.toConst(), .unsigned, 8 * byte_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
r.positive = false; // Negate.
}
}
r.normalize(r.len);
}