DoxigAlpha

llpow

Knuth 4.6.3

Function parameters

Parameters

#
r:[]Limb
a:[]const Limb
b:u32
tmp_limbs:[]Limb

Used to indicate either limit of a 2s-complement integer.

Types

#
TwosCompIntLimit
Used to indicate either limit of a 2s-complement integer.
Mutable
A arbitrary-precision big integer, with a fixed set of mutable limbs.
Const
A arbitrary-precision big integer, with a fixed set of immutable limbs.
Managed
An arbitrary-precision big integer along with an allocator which manages the memory.

Returns the number of limbs needed to store `scalar`, which must be a

Functions

#
calcLimbLen
Returns the number of limbs needed to store `scalar`, which must be a
calcSetStringLimbCount
Assumes `string_len` doesn't account for minus signs if the number is negative.
calcNonZeroTwosCompLimbCount
Compute the number of limbs required to store a 2s-complement number of `bit_count` bits.
calcTwosCompLimbCount
Compute the number of limbs required to store a 2s-complement number of `bit_count` bits.
addMulLimbWithCarry
a + b * c + *carry, sets carry to the overflow bits
llcmp
Returns -1, 0, 1 if |a| < |b|, |a| == |b| or |a| > |b| respectively for limbs.

Source

Implementation

#
fn llpow(r: []Limb, a: []const Limb, b: u32, tmp_limbs: []Limb) void {
    var tmp1: []Limb = undefined;
    var tmp2: []Limb = undefined;

    // Multiplication requires no aliasing between the operand and the result
    // variable, use the output limbs and another temporary set to overcome this
    // limitation.
    // The initial assignment makes the result end in `r` so an extra memory
    // copy is saved, each 1 flips the index twice so it's only the zeros that
    // matter.
    const b_leading_zeros = @clz(b);
    const exp_zeros = @popCount(~b) - b_leading_zeros;
    if (exp_zeros & 1 != 0) {
        tmp1 = tmp_limbs;
        tmp2 = r;
    } else {
        tmp1 = r;
        tmp2 = tmp_limbs;
    }

    @memcpy(tmp1[0..a.len], a);
    @memset(tmp1[a.len..], 0);

    // Scan the exponent as a binary number, from left to right, dropping the
    // most significant bit set.
    // Square the result if the current bit is zero, square and multiply by a if
    // it is one.
    const exp_bits = 32 - 1 - b_leading_zeros;
    var exp = b << @as(u5, @intCast(1 + b_leading_zeros));

    var i: usize = 0;
    while (i < exp_bits) : (i += 1) {
        // Square
        @memset(tmp2, 0);
        llsquareBasecase(tmp2, tmp1[0..llnormalize(tmp1)]);
        mem.swap([]Limb, &tmp1, &tmp2);
        // Multiply by a
        const ov = @shlWithOverflow(exp, 1);
        exp = ov[0];
        if (ov[1] != 0) {
            @memset(tmp2, 0);
            llmulacc(.add, null, tmp2, tmp1[0..llnormalize(tmp1)], a);
            mem.swap([]Limb, &tmp1, &tmp2);
        }
    }
}