gcd
Returns the greatest common divisor (GCD) of two unsigned integers (a and b) which are not both zero.
For example, the GCD of 8 and 12 is 4, that is, gcd(8, 12) == 4.
Function parameters
Parameters
- a:anytype
- b:anytype
Returns the greatest common divisor (GCD) of two unsigned integers (`a` and `b`) which are not both zero.
Functions
- gcd
- Returns the greatest common divisor (GCD) of two unsigned integers (`a` and `b`) which are not both zero.
Source
Implementation
pub fn gcd(a: anytype, b: anytype) @TypeOf(a, b) {
const N = switch (@TypeOf(a, b)) {
// convert comptime_int to some sized int type for @ctz
comptime_int => std.math.IntFittingRange(@min(a, b), @max(a, b)),
else => |T| T,
};
if (@typeInfo(N) != .int or @typeInfo(N).int.signedness != .unsigned) {
@compileError("`a` and `b` must be usigned integers");
}
// using an optimised form of Stein's algorithm:
// https://en.wikipedia.org/wiki/Binary_GCD_algorithm
std.debug.assert(a != 0 or b != 0);
if (a == 0) return b;
if (b == 0) return a;
var x: N = a;
var y: N = b;
const xz = @ctz(x);
const yz = @ctz(y);
const shift = @min(xz, yz);
x >>= @intCast(xz);
y >>= @intCast(yz);
var diff = y -% x;
while (diff != 0) : (diff = y -% x) {
// ctz is invariant under negation, we
// put it here to ease data dependencies,
// makes the CPU happy.
const zeros = @ctz(diff);
if (x > y) diff = -%diff;
y = @min(x, y);
x = diff >> @intCast(zeros);
}
return y << @intCast(shift);
}