ldexp
Returns x * 2^n.
Function parameters
Parameters
- x:anytype
- n:i32
Returns x * 2^n.
Functions
- ldexp
- Returns x * 2^n.
Source
Implementation
pub fn ldexp(x: anytype, n: i32) @TypeOf(x) {
const T = @TypeOf(x);
const TBits = std.meta.Int(.unsigned, @typeInfo(T).float.bits);
const exponent_bits = math.floatExponentBits(T);
const mantissa_bits = math.floatMantissaBits(T);
const fractional_bits = math.floatFractionalBits(T);
const max_biased_exponent = 2 * math.floatExponentMax(T);
const mantissa_mask = @as(TBits, (1 << mantissa_bits) - 1);
const repr = @as(TBits, @bitCast(x));
const sign_bit = repr & (1 << (exponent_bits + mantissa_bits));
if (math.isNan(x) or !math.isFinite(x))
return x;
var exponent: i32 = @as(i32, @intCast((repr << 1) >> (mantissa_bits + 1)));
if (exponent == 0)
exponent += (@as(i32, exponent_bits) + @intFromBool(T == f80)) - @clz(repr << 1);
if (n >= 0) {
if (n > max_biased_exponent - exponent) {
// Overflow. Return +/- inf
return @as(T, @bitCast(@as(TBits, @bitCast(math.inf(T))) | sign_bit));
} else if (exponent + n <= 0) {
// Result is subnormal
return @as(T, @bitCast((repr << @as(Log2Int(TBits), @intCast(n))) | sign_bit));
} else if (exponent <= 0) {
// Result is normal, but needs shifting
var result = @as(TBits, @intCast(n + exponent)) << mantissa_bits;
result |= (repr << @as(Log2Int(TBits), @intCast(1 - exponent))) & mantissa_mask;
return @as(T, @bitCast(result | sign_bit));
}
// Result needs no shifting
return @as(T, @bitCast(repr + (@as(TBits, @intCast(n)) << mantissa_bits)));
} else {
if (n <= -exponent) {
if (n < -(mantissa_bits + exponent))
return @as(T, @bitCast(sign_bit)); // Severe underflow. Return +/- 0
// Result underflowed, we need to shift and round
const shift = @as(Log2Int(TBits), @intCast(@min(-n, -(exponent + n) + 1)));
const exact_tie: bool = @ctz(repr) == shift - 1;
var result = repr & mantissa_mask;
if (T != f80) // Include integer bit
result |= @as(TBits, @intFromBool(exponent > 0)) << fractional_bits;
result = @as(TBits, @intCast((result >> (shift - 1))));
// Round result, including round-to-even for exact ties
result = ((result + 1) >> 1) & ~@as(TBits, @intFromBool(exact_tie));
return @as(T, @bitCast(result | sign_bit));
}
// Result is exact, and needs no shifting
return @as(T, @bitCast(repr - (@as(TBits, @intCast(-n)) << mantissa_bits)));
}
}